Presentation on Boolean algebra and logic gates

Presentation on Boolean algebra and logic gates

Project Type: Presentation (pptx)

Downloads: 0 - 10 Sunday 19th March 2017 Report

Presentation on Boolean algebra and logic gates - Overview

------------ PAGE 1 ------------ Boolean algebra and logic gates Fahmida Afrin Lecturer Dept of CSE Daffodil International University ------------ PAGE 2 ------------ Boolean Variables ------------ PAGE 3 ------------ Boolean Algebra ------------ PAGE 4 ------------ Truth Tables ------------ PAGE 5 ------------ OR Operation with OR Gates ------------ PAGE 6 ------------ Example 3- 1 ------------ PAGE 7 ------------ Example 3- 2 ------------ PAGE 8 ------------ AND Operation with AND Gates ------------ PAGE 9 ------------ Example 3- 9 ------------ PAGE 10 ------------ NOT Operation ------------ PAGE 11 ------------ Summery of Boolean Operations ------------ PAGE 12 ------------ Describing Logic Circuits Algebraically ------------ PAGE 13 ------------ Circuits Containing INVERTERs ------------ PAGE 14 ------------ Evaluating Logic- Circuit Outputs ------------ PAGE 15 ------------ Evaluating Logic- Circuit Outputs ------------ PAGE 16 ------------ Evaluating Logic- Circuit Outputs Figure ( a) Figure ( b) ------------ PAGE 17 ------------ Evaluating a Boolean expression • Perform all inversions of single terms • Perform all operations within parentheses • Perform an AND operation before an OR operation • If an expression has a bar over it, perform the operations inside the expression first and then invert the result. ------------ PAGE 18 ------------ Implementing Circuits from Boolean Expressions ------------ PAGE 19 ------------ Implementing Circuits from Boolean Expressions • Draw the circuit diagram to implement the expression x=( A B)( B C). ------------ PAGE 20 ------------ Determining Output Level from a Diagram • Analyze the operation of Figure by creating a table showing the logic state at each node of the circuit. ------------ PAGE 21 ------------ circuit. ------------ PAGE 22 ------------ NOR Gate ------------ PAGE 23 ------------ Example 3- 8 ------------ PAGE 24 ------------ NAND Gate ------------ PAGE 25 ------------ Example 3- 10 ------------ PAGE 26 ------------ Boolean Theorems FIGURE : Single- variable theorems. ------------ PAGE 27 ------------ Boolean Theorems Figure: Multivariable Theorems ------------ PAGE 28 ------------ Some Properties of Identities and the Algebra „X The dual of an algebraic expression is obtained by interchanging and · and interchanging 0’ s and 1’ s. „X The identities appear in dual pairs. When there is only one identity on a line the identity is self- dual, i. e., the dual expression = the original expression.
Back to top of page